

Application Note

Astra™ Machina SL2610 RDK PMIC Solution

Abstract: This application note describes the SL2610 RDK's PMIC solution and system requirement.

Contents

1.	Ove	rview	
	1.1.	Worst-Case Consideration	6 6
	1.3.	1.2.4. System-Level Power Rail Sequencing(LPDDR4x):RDK_DDR4 PMIC Solutions	
2.	Refe	erences	
2	Povi	ision History	10

List of Figures

Downloaded by Anorthous On Standard Parish Jille

List of Tables

Table 1. Recommended Operating Conditions	5
Table 2. Worst Case Power Requirement	6
Table 3. SL2610 Power Ramp Rate	.7
Table 4. Recommended PMICs by Power Rail	8

Downloaded by Anonymous On Swan Anonymous On Swa

1. Overview

The Astra™ Machina SL2610 SoC requires multiple power rails to support its core logic, memory interfaces, and peripheral subsystems. Proper sequencing and regulation of these supplies are essential to ensure reliable operation.

Core Supply (SOC_VDD):

Nominal operating voltage: 0.8 V

Supports dynamic voltage scaling for performance and power optimization. Over-drive up to 0.9 V or higher is supported for performance enhancement of the Cortex-A55 cores and Neural Processing Unit (NPU).

I/O Supplies (VDDQ, VDDQLP):

Nominal operating voltage is depending on DDR interface standard. Consumption is workload dependent.

Peripheral and Analog Supplies:

Dedicated rails power subsystems such as USB, PHYs, and analog circuits. Voltage levels and current requirements are interface-specific; refer to the SL2610 Datasheet for details.

Table 1. Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Units
AVDD1P8	All analog supply voltage at 1.8V	_	1.71	1.8	1.89	
MO_AVDD1P8	Memory 1.8V supply voltage	_	1.71	1.8	1.89	
VDDIO1P8	All IO supply voltage at 1.8V	_	1.71	1.8	1.89	
AVDD3P3	All USB AVDD3P3 at 3.3 supply voltage	_	3.135	3.3	3.465	
SMM_VDD_CORE	SM Core supply voltage	_	0.72	0.8	0.88	
AVDD	All analog supply voltage at	Consumer	TBD	_	TBD	
AVDD		Industrial	TBD	_	TBD	
DVDD	All LIST DVDD Q QV and a wash walked	Consumer	TBD	_	TBD	V
DVDD	All USB DVDD 0.8V core supply voltage	Industrial	TBD	_	TBD	
VDD_CORE	Core supply voltage 0.8V	Consumer	TBD	0.8	TBD	
VDD_CORE		Industrial	TBD	0.8	TBD	
	I/O supply voltage for DDR3L at 1.35V	_	1.283	1.35	1.418	
VDDQ	I/O supply voltage for DDR4 at 1.2V	_	1.14	1.2	1.26	
	I/O supply voltage for LPDDR4 at 1.1V	_	1.06	1.1	1.17	
VDDQLP	I/O supply voltage for LPDDR4x at 0.6V	_	0.57	0.6	0.63	

1.1. Worst-Case Consideration

Worst-Case design point assumes fast process corner and 105 °C operation (Commercial Grade), with all functional blocks active simultaneously.

Power rails should be sized to sustain maximum current demand under this condition.

Table 2. Worst Case Power Requirement

SL2610 RDK Power Group	Voltage(V)	System Current Requirement(A)	SOC Current Requirement(A)
SM_VDD	0.8	0.2	0.1
SOC_VDD	0.8	4	4
SM_1P8	1.8	1	0.1
VPP	2.5	0.5	0
VDD	1.2	0.5	0.25
SOC_3P3	3.3	2	0.4
SOC_1P8	1.8	1 ,0	0.4

1.2. Power Sequence and Ramp Rate

1.2.1. DDR4 Power-Up Sequence Requirements

- VPP (2.5V) ≥ VDD (1.2V) ≥ VDDQ (1.2V).
- VPP is required only for DDR4 DRAM, not connected to the SoC directly.
- VDD is the core voltage for DDR4.
- VDDQ is the I/O voltage and must not exceed VDD on power-up.

1.2.2. System-Level Power Rail Sequencing:

• SM_VDD_CORE > VDD_CORE > SM_1P8 > VDD (DDR4 Core) ≥ VDDQ (DDR4 I/O) > SOC_3P3 > SOC_1P8

1.2.3. LPDDR4 / LPDDR4x Power-Up Sequence Requirements

- VDD1 (1.8V) ≥ VDD2 (1.1V) ≥ VDDQ (0.6V).
- VDD1 is the analog power (e.g., PLL).
- VDD2 is the core power.
- VDDQ is the I/O power and must never exceed VDD2.
- These three must ramp in order or simultaneously.

Note: VDDQ(0.6V) only needs to follow JEDEC LPDDR4 specification; it has no direct relation to SoC power sequence.

1.2.4. System-Level Power Rail Sequencing(LPDDR4x):

• SM_VDD_CORE > VDD_CORE > SM_1P8 ≥ VDD1(1.8V) ≥ VDD2(1.1V) > SOC_3P3 > SOC_1P8

Table 3. SL2610 Power Ramp Rate

Power-up						
Timing Parameter	Power Rails	Min	Тур	Мах	Units	
	SM_VCORE, VDD_CORE	_	_	18		
	All of DVDD	_	_	18		
	All of AVDD	_	_	18		
	All of VDDIO1P8	_	_	18		
Ramp rate	All of AVDD1P8	_	_	18	mV/uS	
	VDDQLP			57		
	VDDQ		20.	18		
	MO_AVDD1P8	_	_			
	All of AVDD3P3		933	100		

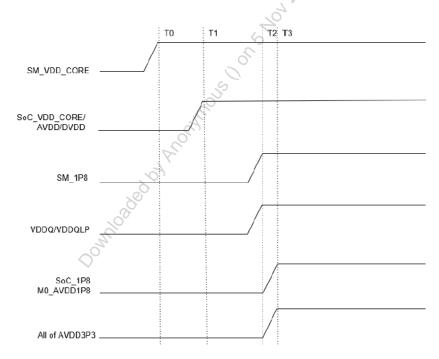


Figure 1. SL2610 Power Sequence

Notes:

- 1. Each power rail must reach its full operating voltage (100%) before the next dependent rail begins ramping up where it is applicable.
- 2. There are no ordering restrictions between the SoC 1.8V and SoC 3.3V supply domains during either power-up or power-down.

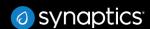
1.3. RDK_DDR4 PMIC Solutions

To support multiple voltage rails for SL2610's CPU, memory, I/O, and system management domains. The power solution uses a combination of DC-DC converters and LDOs, primarily from Silergy, with 2nd source options for cost or sourcing flexibility.

Table 4. Recommended PMICs by Power Rail

Power Rail	Vendor	PMIC
VCORE	Silergy	SY8827N (6A, I2C control)
0-40	MPS	MP8867(8A) or MP8864(4A)
2nd Source	TI	TPS628660A(6A)/TPS628640AYCG(4A)
3.3V/1.8V	Silergy	SY8832AIC(2A)
2nd Source	Fitipower	FP6397S5(2A)/FP6396S5(1.2A)
2.5V	ON Semiconductor	NCP114ASN250T1G(0.3A)
1.2V	Silergy	SY8088IAAC(1A)
2nd Source	Fitipower	FP6396S5(1.2A)
0.6V VTT	TI	TPS51206DSQR(2A)
0.8V for SM	Silergy	SY8088IAAC(1A, DC-DC)
2nd Source	Fitipower	FP6396S5(1.2A)

2. References


- Astra Machina Foundation Series Quick Start Guide (PN: 511-001404-01)
- Astra Machina SL1620 Developer Kit User Guide (PN: 511-001407-01)
- Astra Machina SL1640 Developer Kit User Guide (PN: 511-001405-01)
- Astra Machina SL1680 Developer Kit User Guide (PN: 511-001403-01)
- Astra Machina SL2600 Series Developer Kit User Guide (PN: 511-001453-01)

Downloaded by Anorthous On Standard Parish Jille

3. Revision History

Revision	Description
А	Initial release.

Downloaded by Anorthous Oor Sway 2015 of 1916

Copyright

Copyright © 2025 Synaptics Incorporated. All Rights Reserved.

Trademark

Astra Machina, Synaptics and the Synaptics logo are trademarks or registered trademarks of Synaptics Incorporated in the United States and/or other countries.

All other trademarks are the properties of their respective owners.

Contact Us

Visit our website at www.synaptics.com to locate the Synaptics office nearest you. PN: 506-001646-01 Rev A

Notic

Use of the materials may require a license of intellectual property from a third party or from Synaptics. This document conveys no express or implied licenses to any intellectual property rights belonging to Synaptics or any other party. Synaptics may, from time to time and at its sole option, update the information contained in this document without notice.

INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED "AS-IS," AND SYNAPTICS HEREBY DISCLAIMS ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY WARRANTIES OF NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT SHALL SYNAPTICS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, HOWEVER CAUSED AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, AND EVEN IF SYNAPTICS WAS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IF A TRIBUNAL OF COMPETENT JURISDICTION DOES NOT PERMIT THE DISCLAIMER OF DIRECT DAMAGES OR ANY OTHER DAMAGES, SYNAPTICS' TOTAL CUMULATIVE LIABILITY TO ANY PARTY SHALL NOT EXCEED ONE HUNDRED U.S. DOLLARS.