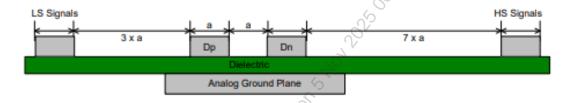


Application Note

SL2610 General PCB Design and DDR3L/DDR4 & LPDDR4(x) Interface Layout Guidelines


Abstract: This document provides PCB layout guidelines for integrating DDR3L, DDR4, and LPDDR4(x) memory with the SL2610 processor. It outlines key practices in routing, impedance control, and length matching to ensure signal integrity and reliable system performance.

Contents

1.	PCB Layout Guidelines					
2.	Power Supply Guidelines	4				
3.	4L non-HDI PCB Design Rules 3.1. NSMD Pad 3.2. SMD Pad 3.3. Via 3.4. Spacing	5				
4.	PCB Routing Rules for SL2610 DDR3L/DDR4 & LPDDR4(x) Interface					
5.	Revision History	17				

1. PCB Layout Guidelines

- Trace impedance of 100 Ω differential (+/-10%) is required. For USB2.0, the trace impedance of 90 Ω differential (+/-10%) is required.
- Matching to < 0.5mm (about 0.02 inch) between two different signals. Trace lengths should match by 0.25mm (about 0.01 inch) or less for differential pairs (same pair) of high-speed signals.
- The skew between any data lane and clock lane should be matched within +/-10ps on both package and PCB.
- Do not route trace over plane void or anti-pads. Return path should be VSS and continuous.
- Ensure ground return vias adjacent to the differential pair core vias to minimize crosstalk between lanes.
- Void the planes above the BGA pads to minimize the capacitive discontinuity.
- To minimize crosstalk, take care of signal traces which are routed close to the data differential pairs. The minimum recommended spacing is 3xa for low-speed non-periodic signals and 7xa for high-speed periodic signals. A continuous ground plane below the differential lines is required.

- TX and RX pairs should not be routed side-by-side in the same signal layer.
- Crosstalk should be accumulated total with all aggressors and meet the -30dB requirement until Nyquist frequency.
- Differential trace insertion loss should be greater than -3 dB at the Nyquist frequency for standard high-speed interfaces. For PCle 3.0, USB 3.0, and Ethernet, up to -6 dB is acceptable with receiver equalization. The loss profile must be monotonic, with no variations exceeding ±2 dB across the Nyquist band. Differential pairs should be short, impedance-controlled, length-matched within the specified intra-pair skew limits, and routed over continuous ground reference planes to minimize loss.
- Single-ended trace insertion loss should be less than -3 dB at the Nyquist frequency to maintain signal integrity. The loss profile should be monotonic with no abrupt variations, and deviations within the Nyquist band should not exceed ± 1.5 dB. Traces should be as short as practical, impedance-controlled (typically 50 Ω $\pm 10\%$), and routed over continuous reference planes to minimize reflection and loss.

2. Power Supply Guidelines

- Supply bypass capacitors are recommended to minimize power supply noise. Noise analysis
 of the power delivery network is required to determine the actual values. Depending on their
 size, each capacitor will have a different equivalent series resistance (ESR) and equivalent
 series inductance (ESL) that will determine the given capacitor's effectiveness over a
 frequency range. In general, several low-value capacitors (ceramic-type capacitors) should
 be placed as close as possible to the package pins. Larger-value capacitors
 (tantalum/electrolytic-type capacitors) can be placed farther away.
- The supply bypass capacitors should be connected as close as possible to the package pins to ensure a tight return path and maximize their effectiveness. When connecting from the package pin to the bypass capacitors, use as wide a plane / trace as possible to reduce inductive and resistive losses. Typical capacitor placement can be under the package (other side of the board) or on the same side but close. An example of bypass capacitors is shown below.

Component	Value ¹
Power Supply Bypass Capacitors	0.01 μF, 0.1 μF, 4.7 μF, 10.0 μF

- . Smaller-value capacitors must be placed between the ferrite bead and the package.
- Both power plane and ground plane should be maintained continuously and have solid return
 path (not in bits and pieces). Pay attention to the void areas caused by vias. If the planes are
 cut down by vias, we need to compensate for the loss of the plane shape to make sure the
 effective width of the plane.

3. 4L non-HDI PCB Design Rules

3.1. NSMD Pad

- Minimum pin pitch = 0.4 mm (15.75 mil)
- Footprint pad / Paste mask of pad = 10mil (bga10)
- Solder mask of pad = 10 mil

3.2. SMD Pad

- Minimum pin pitch = 0.381 mm (15 mil)
- Footprint pad / Paste mask of pad = 12 mil (bga12)
- Solder mask of pad = 8 mil

3.3. Via

Minimum through hole pad / Drill size = 14 / 8 mil

3.4. Spacing

- Minimum trace-to-trace = 1x trace width
- Minimum trace-to-via = 1 x trace width
- Minimum trace-to-pad = 1x trace width

The example stack-up/trace width and spacing of 4L non-HDI PCB is shown below.

			-1.1		511	D.	
	Stack-up			ss(mil)	DK	Df	Material
	SM_TOP (0.5_PT_10Z)	0.5			3.4		
L1			1.654	0.333oz +Plating			
	PP (1080/RC=69%) / 0.076mm	2.99			4.14	0.019	S1000-2M
L2			1.26	1oz			
	Core+PP (1.3mm)	51.18			4.6	0.018	S1000-2M
L3			1.26	1oz			
	PP (1080/RC=69%) / 0.076mm	2.99			4.14	0.019	S1000-2M
L4			1.654	0.333oz +Plating			
	SM_BOT (0.5_PT_10Z)	0.5			3.4		
Thickness(mil):	63.988	63.988					
FinishPCBThinckness(mm):	1.6 (+/-0.16) mm						
PressPCBThinkness(mm):	1.48 (+/-0.08) mm						
Number	Туре	Control Layer	Referance Layer	Adjust Line Width (mil)	Adjust Spacing (mil)	Adjust Line To Copper (mil)	Design Impedance (ohm)
1	Single-End	L1/L4	L2/L3	3.6			55.01
2	Single-End	L1/L4	L2/L3	4			52.93
3	Single-End	L1/L4	L2/L3	4.5			50.15
4	Differential	L1/L4	L2/L3	3.5	3		84.62
5	Differential	L1/L4	L2/L3	3.6	4		90.11
6	Differential	L1/L4	L2/L3	3.4	5.8		99.3
7	Differential	L1/L4	L2/L3	4	4		88.41

4. PCB Routing Rules for SL2610 DDR3L/DDR4 & LPDDR4(x) Interface

Note:

- This guideline recommends optimal layout practices for the DRAM section and is not a set of strict limitations.
- Synaptics reference layouts follow the guidelines, ensuring good operating timing margins.
- It is strongly recommended to copy DDR routing from the reference design.

4.1. General Rules

The general rules of usage are:

- All signals must be routed with solid reference layer.
- Ground reference routing for all signals is preferred.
- No signal can be routed through discontinued reference.
- Impedance of single-ended signals should be targeted at a certain value within the small range of 50 Ω to 55 Ω ±10%
- All differential signals should have a differential impedance of 85 Ω ±10%.
- Via delay should be counted for length matching.
- No more than two vias on any signal between SoC and DRAMs is recommended. (Low speed DDR RSTn is not included in consideration).

4.2. Component Placement Guidelines for SL2610 and DRAM Power Integrity

- The DDR3L/DDR4/LPDDR4(x) signal pin assignments of SL2610 are designed to allow the DRAM chips to be placed next to SoC on top layer.
- Underneath SoC, the decoupling capacitors for VDDM is a combination of various capacitors that provide lower impedance from DC to 300MHz, it is highly recommended to follow the placement/values in Synaptics Reference Design Kits.
- RC components connecting to SL2610 MO_VREF should be placed as close to the pin as possible.
- A 1% 120 ohm (pulldown to GND) connecting to MO_CAL should be placed as close to the pin as possible.
- RC components connecting to SDRAM_CKO+/- should be placed as close to the SDRAM pins as possible.
- A pair of 1nF and 10nF capacitors should be placed at each individual power pin of SoC and all DRAMs as close as possible for decoupling purpose.
- A pair of 1nF and 10nF capacitors should be placed at the edge of power plane for reducing resonance purpose.
- All 1uF/10uF capacitors are suggested to be placed at the input of power rail for both SoC and DRAM, or at any bottleneck location of other power traces.

4.3. DDR3L/DDR4 Trace Length and Skew Guidelines

- Trace length difference of the DDR3L/DDR4 signals (within each own group) should be maintained in the following:
 - DDR3L:
 - DQ-to-DQ (including DQS) for each Byte group: keep shortest for each trace, trace length matching is not required (for DDR3 only)
 - Address / Command (ADCM) -to-ADCM (including CLK): keep shortest for each trace, trace length matching is not required (for DDR3 only).
 - DDR4:
 - DQ-DQS total length matching within ±70 ps
 - DQS+ to DQS- skew ≤ 4.5 ps
- Intra-pair of Differential signals (DQS+/-, CLK+/-): 15 mil
- The stub length from the via of each CKO+/- trace to the resistor pad should be kept within 50 mil.

4.4. DDR3L/DDR4/LPDDR4(x) Package Trace Length Compensation

- Trace lengths between the chip die and package pins were not well matched due to package geometry, causing varying propagation delays and impacting timing margins. To compensate for this mismatch, proper PCB routing is essential. Refer to the table below for the electrical length of individual traces.
- Note that compensation should be made in addition to any special trace matching or tuning requirements mentioned in the sections that follow.
- The detailed constraint information can be found in the Synaptics reference layout files.

Table 1. Propagation Delay of Byte Lane O Group

	Byte Lane O Group						
Pin	Signal Net	DDR4 Signal	LPDDR4 Signal	DDR3L Signal	Package Substrate Trace Length (um)	Package Propagation Delay (ps)	Equivalent PCB Trace Length Based on Propagation delay Entered (mil)
G2	MO_DQSn[0]	MO_DDR4_DQS0n	MO_LPDDR4_DQS1n	MO_DDR3L_DQSOn	5178.341	31.23	191.60
G1	MO_DQSp[0]	MO_DDR4_DQS0p	MO_LPDDR4_DQS1p	MO_DDR3L_DQSOp	5493.159	33.13	203.25
J6	MO_DM[O]	MO_DDR4_DMO	MO_LPDDR4_DM1	MO_DDR3L_DMO	2741.372	16.53	101.43
H2	MO_DQ[0]	MO_DDR4_DQ0	MO_LPDDR4_DQ8	MO_DDR3L_DQO	5086.269	30.68	188.20
J1	MO_DQ[1]	MO_DDR4_DQ1	MO_LPDDR4_DQ15	MO_DDR3L_DQ3	5183.7	31.26	191.80
J3	MO_DQ[2]	MO_DDR4_DQ2	MO_LPDDR4_DQ14	MO_DDR3L_DQ2	4455.265	26.87	164.85
J5	MO_DQ[3]	MO_DDR4_DQ3	MO_LPDDR4_DQ11	MO_DDR3L_DQ1	3698.43	22.31	136.84
K2	MO_DQ[4]	MO_DDR4_DQ4	MO_LPDDR4_DQ10	MO_DDR3L_DQ5	4285.386	25.85	158.56
J2	MO_DQ[5]	MO_DDR4_DQ5	MO_LPDDR4_DQ9	MO_DDR3L_DQ4	4529.759	27.32	167.60
L2	MO_DQ[6]	MO_DDR4_DQ6	MO_LPDDR4_DQ12	MO_DDR3L_DQ7	4639.5	27.98	171.66
L6	MO_DQ[7]	MO_DDR4_DQ7	MO_LPDDR4_DQ13	MO_DDR3L_DQ6	2532.89	15.28	93.72

Table 2. Propagation Delay of Byte Lane 1 Group

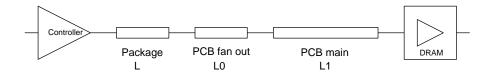
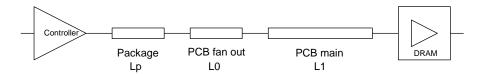

Byte Lane 1 Group							
Pin	Signal Net	DDR4 Signal	LPDDR4 Signal	DDR3L Signal	Package Substrate Trace Length (um)	Package Propagation Delay (ps)	Equivalent PCB Trace Length Based on Propagation delay Entered (mil)
D1	MO_DQSn[1]	MO_DDR4_DQS1n	MO_LPDDR4_DQSOn	MO_DDR3L_DQS1n	5777.886	34.85	213.79
D2	MO_DQSp[1]	MO_DDR4_DQS1p	MO_LPDDR4_DQS0p	MO_DDR3L_DQS1p	5630.78	33.96	208.34
D4	MO_DM[1]	MO_DDR4_DM1	MO_LPDDR4_DMO	MO_DDR3L_DM1	4547.985	27.43	168.28
C2	MO_DQ[8]	MO_DDR4_DQ8	MO_LPDDR4_DQ0	MO_DDR3L_DQ15	5521.61	33.30	204.30
E2	MO_DQ[9]	MO_DDR4_DQ9	MO_LPDDR4_DQ1	MO_DDR3L_DQ12	5007.082	30.20	185.27
F2	MO_DQ[10]	MO_DDR4_DQ10	MO_LPDDR4_DQ7	MO_DDR3L_DQ14	5198.877	31.35	192.36
F4	MO_DQ[11]	MO_DDR4_DQ11	MO_LPDDR4_DQ5	MO_DDR3L_DQ10	4167.23	25.13	154.19
G6	MO_DQ[12]	MO_DDR4_DQ12	MO_LPDDR4_DQ3	MO_DDR3L_DQ13	3360.915	20.27	124.36
F1	MO_DQ[13]	MO_DDR4_DQ13	MO_LPDDR4_DQ6	MO_DDR3L_DQ8	5598.213	33.76	207.14
F3	MO_DQ[14]	MO_DDR4_DQ14	MO_LPDDR4_DQ2	MO_DDR3L_DQ9	4345.803	26.21	160.80
G4	MO_DQ[15]	MO_DDR4_DQ15	MO_LPDDR4_DQ4	MO_DDR3L_DQ11	3794.001	22.88	140.38

Table 3. Propagation Delay of Address / Command / Control Group

	ADDRESS / COMMAND / CONTROL Group						
Pin	Signal Net	DDR4 Signal	LPDDR4 Signal	DDR3L Signal	Package Substrate Trace Length (um)	Package Propagation Delay (ps)	Equivalent PCB Trace Length Based on Propagation delay Entered (mil)
М3	MO_CKn	MO_DDR4_CKn	MO_LPDDR4_CKn	MO_DDR3L_CKn	4234.202	25.54	156.67
N3	MO_CKp	MO_DDR4_CKp	MO_LPDDR4_CKp	MO_DDR3L_CKp	4224.001	25.48	156.29
W3	MO_A[O]	MO_DDR4_AO	LPDDR4_NC	MO_DDR3L_A5	3961.842	23.89	146.59
W7	MO_A[1]	MO_DDR4_A1	LPDDR4_NC	MO_DDR3L_BAO	3134.222	18.90	115.97
AA3	MO_A[2]	MO_DDR4_A2	MO_LPDDR4_AO	MO_DDR3L_A13	4204.208	25.36	155.56
W6	MO_A[3]	MO_DDR4_A3	LPDDR4_NC	MO_DDR3L_BA2	3028	18.26	112.04
V2	MO_A[4]	MO_DDR4_A4	MO_LPDDR4_A5	MO_DDR3L_A3	4601.548	27.75	170.26
R3	MO_A[5]	MO_DDR4_A5	LPDDR4_NC	MO_DDR3L_A8	4073.575	24.57	150.72
Y1	MO_A[6]	MO_DDR4_A6	MO_LPDDR4_A2	MO_DDR3L_A9	5493.142	33.13	203.25
U3	MO_A[7]	MO_DDR4_A7	LPDDR4_NC	MO_DDR3L_A14	3878.462	23.39	143.51
AA2	MO_A[8]	MO_DDR4_A8	MO_LPDDR4_A1	MO_DDR3L_A11	5136.405	30.98	190.05
Y2	MO_A[9]	MO_DDR4_A9	LPDDR4_NC	MO_DDR3L_A1	4455.35	26.87	164.85
U2	MO_A[10]	MO_DDR4_A10	MO_LPDDR4_A3	MO_DDR3L_A12	4327.679	26.10	160.13
AB3	MO_A[11]	MO_DDR4_A11	LPDDR4_NC	MO_DDR3L_A7	4446.522	26.82	164.52
R4	MO_A[12]	MO_DDR4_A12	LPDDR4_NC	MO_DDR3L_WEn	3610.94	21.78	133.61
U1	MO_A[13]	MO_DDR4_A13	MO_LPDDR4_A4	MO_DDR3L_AO	4901.54	29.56	181.36
U6	MO_ACTn	MO_DDR4_ACTn	LPDDR4_NC	MO_DDR3L_CASn	2632.241	15.88	97.39
V3	MO_BA[O]	MO_DDR4_BAO	LPDDR4_NC	MO_DDR3L_A2	4381.633	26.43	162.12
R2	MO_BA[1]	MO_DDR4_BA1	LPDDR4_NC	MO_DDR3L_A6	4399.352	26.53	162.78
U7	MO_BG[0]	MO_DDR4_BGO	LPDDR4_NC	MO_DDR3L_A15	2223.067	13.41	82.25
P1	MO_BG[1]	MO_DDR4_BG1	LPDDR4_NC	MO_DDR3L_BA1	4876.509	29.41	180.43
P2	MO_CASn	MO_DDR4_CASn	LPDDR4_NC	MO_DDR3L_A4	4415.193	26.63	163.36
N6	MO_CKE	MO_DDR4_CKE	MO_LPDDR4_CKE	MO_DDR3L_CKE	2584.036	15.58	95.61
M1	MO_CSn	MO_DDR4_CSn	MO_LPDDR4_CSn	MO_DDR3L_CSn	5207.708	31.41	192.69


	ADDRESS / COMMAND / CONTROL Group						
Pin	Signal Net	DDR4 Signal	LPDDR4 Signal	DDR3L Signal	Package Substrate Trace Length (um)	Package Propagation Delay (ps)	Equivalent PCB Trace Length Based on Propagation delay Entered (mil)
L5	MO_ODT	MO_DDR4_ODT	MO_LPDDR4_ODT	MO_DDR3L_ODT	3255.064	19.63	120.44
M2	MO_RASn	MO_DDR4_RASn	LPDDR4_NC	MO_DDR3L_A10	4570.127	27.56	169.10
N5	MO_WEn	MO_DDR4_WEn	LPDDR4_NC	MO_DDR3L_RASn	3358.069	20.25	124.25
AA4	MO_RSTn	DDR4_RSTn	MO_LPDDR4_RSTn	DDR3L_RSTn	4135.611	24.94	153.02
N8	MO_CAL	MO_CAL	MO_CAL	MO_CAL	1481.695	8.94	54.82

4.5. LPDDR4(x) Data (DQ/DM/DQS) Bus

- All signals use point-to-point routing topology.
- Place the DRAM chip as close to the SoC chip as possible to minimize the trace length from SoC to DRAM.
- The impedance of single-ended signals should be 50 Ω +/- 10%. In the BGA break-out area, it may be 55 Ω +/- 10%.
- The impedance of differential pairs should be 85 Ω +/- 10%.
- DQS must be routed in pairs on the same layer to match propagation delay and should use VSS instead of PWR as the reference plane for optimal current return.
- For each byte lane, the length matching for DQ(DM) to DQ(DM) (Lp + L0 + L1) should be within +/-40 ps.
- For each byte lane, the length matching for DQS to DQ(DM) (Lp + L0 + L1) should be within +/-40 ps.
- For each byte lane, the length matching for DQSp to DQSn (Lp + L0 + L1) should be within +/-0.5 ps.
- The spacing (air gap between traces' edge) between single-ended signals should be:
 - o more than 1x the trace width in the PCB fan-out section (LO).
 - o more than 2x the trace width in the PCB main section (L1).
- The spacing (air gap between traces' edge) between DQSp / DQSn to other signals should be:
 - o more than 1x the maximum intra-pair air gap or trace width in the PCB fan out section (LO).
 - o more than 3x the maximum intra-pair air gap or trace width in the PCB main section (L1).

4.6. LPDDR4(x) CA Bus

- All signals use point-to-point routing topology.
- CLK must be routed in pairs on the same layer to match propagation delay and should use VSS instead of PWR as the reference plane for optimal current return.
- For each CA channel, the length matching for CA(CS) to CA(CS) (Lp + L0 + L1) should be +/-65ps.
- For each CA channel, the length matching for CLK to CA(CS) (Lp + L0 + L1) should be +/-65ps.
- For each CA channel, the length matching for CLKp to CLKn (Lp + LO + L1) should be +/-0.5ps.
- For each CA channel, the length matching for CLK to DQS (Lp+L0+L1) should be +/-90ps.
- The spacing (air gap between traces' edge) between single-ended signals should be:
 - o more than 1x the trace width in the PCB fan out section (LO).
 - o more than 2x the trace width in the PCB main section (L1).
- The spacing (air gap between traces' edge) between CLKp / CLKn to other signals should be:
 - o more than 1x the maximum intra-pair air gap or trace width in the PCB fan out section (LO).
 - o more than 3x the maximum intra-pair air gap or trace width in the PCB main section (L1).

4.7. 4-Layer PCB Routing Example

4.7.1. Footprint

Please follow the dimension drawings specified in the Synaptics datasheet, with particular attention to pad and solder mask opening sizes:

- Pad size: 10 mil
- Solder mask opening: 10 mil

4.7.2. Layout Design Rule

- PCB board thickness: 1.6mm
- 4-layers PCB
- Single-ended trace width: 4 mil
- Single-ended trace impedance: 55 Ω ±10%
- Differential-pair trace width/spacing: 4.5/4 mil
- Differential-pair trace impedance: 85 Ω ±10%
- Minimum via (mechanical drilling) size: 8mil
- Maximal annulus of via: 16mil
- Minimum spacing (not including BGA area):

Pad to pad: 4mi

o Pad to trace: 4mil

Pad to via: 4mil

Trace to trace: 4mil

o Trace to via: 4mil

Via to via: 4mil

4.7.3. Board Stack-up

- The Synaptics EVK (Evaluation Kit) board uses the common 1.6mm PCB stack-up shown below.
- It is suggested that H34 (thickness between L3 and L4) be more than 5x the thickness of H12 (thickness between L1 and L2) to avoid cross talk between signals on L2 and L3.
- High-speed data signals that run on the top layer should reference L2 (VSS).
- Low-speed CA signals that run on the bottom layer should reference L3 (PWR).
- The placement and routing of the Synaptics reference design were derived through comprehensive signal integrity (SI) simulations, including model extraction and transient analysis, to ensure reliable timing closure. This is particularly critical for 4-layer PCB implementations due to the inherent non-homogeneity of microstrip transmission lines. As such, it is not feasible to define a single set of detailed routing rules applicable to all designs. Therefore, it is strongly recommended to follow the PCB layout of the Synaptics reference design. For custom PCB implementations, achieving timing closure through proper SI simulation is essential to ensure functional integrity and robust system performance.

Layer Name	Thickness	Dk @ 1GHz
Top SM	1.18 mil	3.8
Cu1	0.333oz + Planting	
Dielectric	3.2 mil	4.5
Cu2	1 oz	
Core	48.38	4.5
Cu3	1 oz 🛇	
Dielectric	3.2 mil	4.5
Cu4	0.333oz + Planting	
Bottom SM		3.8

4.8. DDR3L/DDR4/LPDDR4(x) Routing Compliance Summary

Table 4. DDR3L/DDR4/LPDDR4(x) Routing Compliance Summary


Summary	DDR3L	DDR4	LPDDR4(x)
DQ-DQS skew (total length)	DQ-DQS skew (total length) Not required (minimize only)		≤ 40 ps
DQS+ to DQS- skew	≤ 15 mil	≤ 4.5 ps	≤ 0.5 ps
CLKp/n - skew	≤ 15 mil	≤ 4.5 ps	≤ 0.5 ps
Diff impedance	85 Ω ±10%	85 Ω ±10%	85 Ω ±10%
SE impedance	50-55 Ω ±10%	50-55 Ω ±10%	50Ω (55Ω in BGA) ±10%
Max vias per net	2 (excluding RSTn)	2 (excluding RSTn)	2 (excluding RSTn)

Domina de do Arabino de Servicio de la compansión de la c

5. Revision History

Revision	Description
А	Initial release.

Downloaded by Anorymous Oor Sway 2015 Oc. 19:19 If C

Copyright

Copyright © 2025 Synaptics Incorporated. All Rights Reserved.

Trademarks

Synaptics and the Synaptics logo are trademarks or registered trademarks of Synaptics Incorporated in the United States and/or other countries.

 $\ensuremath{\mathsf{All}}$ other trademarks are the properties of their respective owners.

Contact U

Visit our website at www.synaptics.com to locate the Synaptics office nearest you. PN: 506-001629-01 Rev A

Notic

Use of the materials may require a license of intellectual property from a third party or from Synaptics. This document conveys no express or implied licenses to any intellectual property rights belonging to Synaptics or any other party. Synaptics may, from time to time and at its sole option, update the information contained in this document without notice.

INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED "AS-IS," AND SYNAPTICS HEREBY DISCLAIMS ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY WARRANTIES OF NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT SHALL SYNAPTICS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, HOWEVER CAUSED AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, AND EVEN IS SYNAPTICS WAS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. IF A TRIBUNAL OF COMPETENT JURISDICTION DOES NOT PERMIT THE DISCLAIMER OF DIRECT DAMAGES OR ANY OTHER DAMAGES, SYNAPTICS" TOTAL CUMULATIVE LIABILITY TO ANY PARTY SHALL NOT EXCEED ONE HUNDRED US. DOLLARS.