

Application Note

Astra™ Machina Foundation Series SPI

Abstract: This application note provides detailed connection and guidelines of the Serial Peripheral Interface (SPI) with the SL162O, SL164O, SL168O, and SL261O RDK.

Contents

1.	1. Overview		
2.	Hardware Connection of SPI1 (xSPI)	5 6	
3.	Hardware Connection of SPI2 on SL16xO RDK	8	
4.	Hardware Connection of SM_SPI1 on SL2610 RDK	9	
5.	Registers of SPI controller		
6.	References	12	
7.	Revision History	13	

List of Tables

Table 1. SPI Controller registers	.1C
Table 2. Base Address of SPI registers	1

Outroated by Anonymous On 30 oct 2015 (c. 188-19) If a superior of the superio

1. Overview

The Serial Peripheral Interface (SPI) is a high-speed, full-duplex communication protocol widely used for interfacing microcontrollers, SoCs, and peripheral devices such as sensors, EEPROMs, ADCs, DACs, and display controllers. Astra RDK provides a built-in SPI controller that supports various modes, clock speeds, and multiple target devices (maximum four devices).

This application note focuses on the hardware design considerations for implementing SPI in Astra RDK-based designs, including SPI Boot mode.

The SL16xO processor includes 2 SPI controllers. For SL168O and SL164O, one of SPI operates on SM domain. Each SPI interface supports up to four target devices.

The SL2610 processor includes 5 SPI controllers. One of SPI operates on SM domain. The other Four SPI interface each support up to four target devices.

The primary features of SoC SPI controller are:

- 4 CS pins
- SPI host and target mode (SL2610 SoC SPI only support host mode)
- DMA mode
- Maximum SPI clock 50 MHz
- SPI mode 0, 1, 2, 3
- 1.8V I/O Voltage
- SPI Boot mode supported (SL16xO with CSO only)

The primary features of SM SPI controller are:

- 4 CS pins
- SPI host and target mode
- Maximum SPI clock 12.5 MHz (SL2610 SM SPI clock up to 25 MHz)
- SPI mode 0, 1, 2, 3
- 1.8V I/O Voltage

2. Hardware Connection of SPI1 (xSPI)

The SPI1 interface on the SL16xO RDK is connected to an on-board SPI flash (W25Q128JWSIQ) for SPI boot. The remaining three chip select (CS) pins are pin-muxed to other functions. Additionally, a 2×6 header is provided on the I/O board to facilitate connections with an external SPI key for debugging purposes.

For SL2610, it uses xSPI interface for boot. The hardware connection is like SL16xO RDK.

Figure 1 illustrates the location of the 2×6 header on the I/O board.

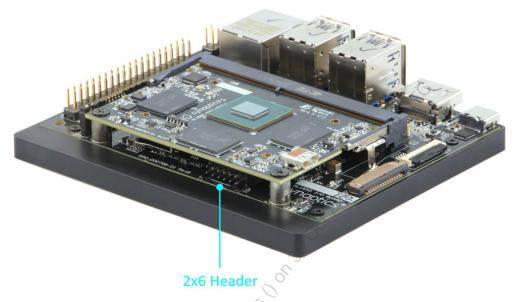


Figure 1. Overview of Astra Machina Foundation Series

2.1. Hardware Connection

Figure 2 illustrates the hardware connections of SPI1 on the SL16xO RDK and xSPI on the SL2610 RDK platform. The design enables seamless boot mode switching between on-board SPI Flash, external SPI key, and eMMC, ensuring flexible boot options.

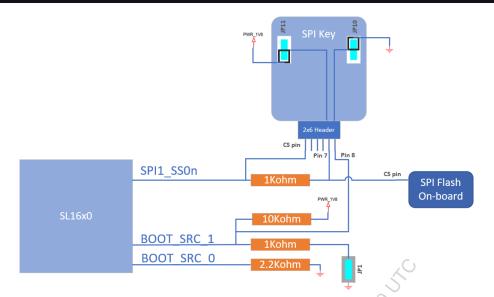


Figure 2. SPI1 connection of SL16xO RDK

2.2. Boot mode of SL16xO RDK

- On-board SPI Boot—SPI1 is connected to the on-board SPI Flash and is used as the primary boot source.
 - Leave 2x6 Header open
 - o Short JP1
 - BOOT_SRC[1:0] = 2'b00
- External SPI Key Boot—SPI1 is connected to both the on-board SPI Flash and the external SPI key. However, the chip select (CS) pin of the on-board SPI Flash is directly tied to 1.8V, effectively bypassing it and preventing it from being selected during communication.
 - JP10 to 2-3, JP11 to 2-3 on SPI board
 - o JP1 no effect
 - o BOOT_SRC[1:0] = 2'b00
- EMMC Boot:
 - Leave 2x6 Header open
 - o Leave JP1 open
 - BOOT_SRC[1:0] = 2'b10

2.3. Boot mode of SL26xO RDK

- On-board SPI Boot—xSPI is connected to the on-board SPI Flash and is used as the primary boot source.
 - Leave 2x6 Header open
 - Short JP1

www.synaptics.com

- BOOT_SRC[1:0] = 2'b01
- External SPI Key Boot—xSPI is connected to both the on-board SPI Flash and the external SPI key. However, the chip select (CS) pin of the on-board SPI Flash is directly tied to 1.8V, effectively bypassing it and preventing it from being selected during communication.

- JP10 to 2-3, JP11 to 1-2 on SPI board
- o Short JP1
- O BOOT_SRC[1:0] = 2'b01

• EMMC Boot:

- Leave 2x6 Header open
- o Leave JP1 open
- O BOOT_SRC[1:0] = 2'b10

Dominaged by Anonymous Or 2012 (c. 148-149) Ille

3. Hardware Connection of SPI2 on SL16xO RDK

SPI2 is routed to the 40-pin header on the I/O board, enabling SPI peripheral expansion. To enhance compatibility with external SPI devices, the I/O voltage of SPI2 on the 40-pin header is converted to 3.3V using an on-board level shifter.

Figure 3 illustrates the location of SPI2 signals on the 40-pin header. Note that SPI2_SS2n is allocated for another function on the board, leaving only three available chip select (CS) lines for SPI peripherals.

SL1680,SL1640/SL1620					
3.3V	1 2 5.0V				
TWO SDA	3 0 4 5.0V				
TWO SCL	5 6 GND				
PWM[1]	7 ● ● 8 UARTO Tx				
GND	9 ● 10 UARTO Rx				
I2S2 BCLK/TW1 SCL	11 ● ● 12 GPI010/CM GPIO-EXP 0 2				
I2S2 LRCK/TW1 SDA	13 0 0 14 GND				
I2S2 DI[0]/I2S1 DI	15 ● ● 16 ADCI[0]/PWM[2]				
3.3V	17 ● 18 ADCI[1]/GPI02				
SPI2_SDO	19 20 GND				
SPI2 SDI	21 ● ●22 GPIO37/GRIO55				
SPI2 CLK	23 ● ●24 SPI2 SSOn				
GND	25				
PDMB_CLKIO/PDM_CLKIO	27 ● ● 28 PDMA DI[1] / PDM DI[1]				
PDMA DI[0]/GPIO22	29 30 GND				
GPI039/GPI048	31 ● ●32 GPIO38/GPIO47				
GPIO36/CM GPIO-EXP 0 7	33 0 34 GND				
I2S1 LRCK	35 ● ● 36 SPI2 SS3n				
I2S1_MCLK	37 ● ● 38 I2S1_BCLK				
GND	39 ● 40 I2S1 DO[0]/I2S1 DO				

Figure 3. SPI2 pin assignment on 40 pin Header

4. Hardware Connection of SM_SPI1 on SL2610 RDK

In SL2610 RDK, SM_SPI1 is routed to the 40-pin header on the I/O board, enabling SPI peripheral expansion. To enhance compatibility with external SPI devices, the I/O voltage of SM_SPI1 on the 40-pin header is converted to 3.3V using an on-board level shifter.

Figure 4 illustrates the location of SM_SPI1 signals on the 40-pin header. Note that SPI1_SSOn, SPI1_SS1n and SPI1_SS2n are allocated for other functions on the board, leaving only one available chip select (SPI1_SS3n) lines for SPI peripherals.

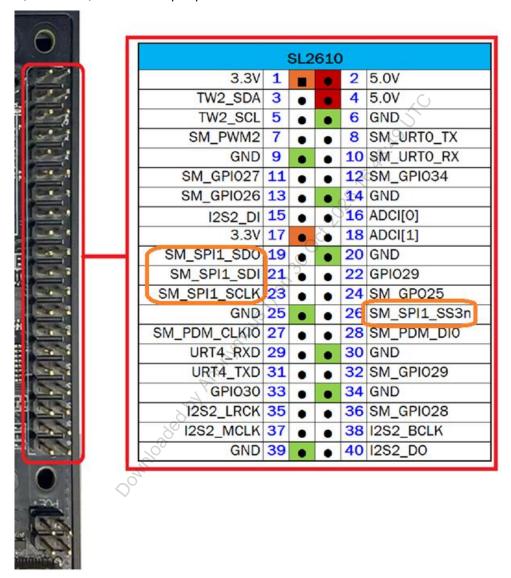


Figure 4. SM_SPI1 pin assignment on 40 pin Header

5. Registers of SPI controller

Table 1 provides the details of the SPI Controller registers.

Table 1. SPI Controller registers

Offset	Name	Description
0x00	CTRLRO	Control Register O This register controls the serial data transfer.
OxO4	CTRLR1	Control Register 1 This register exists only when the DW_apb_ssi is configured as a host device. Control Register 1 controls the end of serial transfers when in receive-only mode.
0x08	SSIENR	SSI Enable Register This register enables and disables the DW_apb_ssi.
OxOC	MWCR	Microwire Control Register This register controls the direction of the data word for the half-duplex Microwire serial protocol.
0x10	SER	Target Enable Register This register is valid only when the DW_apb_ssi is configured as a host device. The register enables the individual target select output lines from the DW_apb_ssi host.
Ox14	BAUDR	Baud Rate Select This register is valid only when the DW_apb_ssi is configured as a host device. The register derives the frequency of the serial clock that regulates the data transfer. The 16-bit field in this register defines the ssi_clk divider value.

5.1. Base address of each SPI controller

Table 2 lists the base address of SPI on each SL16xO and SL261O processor.

Table 2. Base Address of SPI registers

SoC	TWSI Controller	Base Address
01.1000	SPI1	0xF7E81C00
SL1680	SPI2	0xF7FCA000
CL 10 40	SPI1	0xF7E81C00
SL1640	SPI2	0xF7FCA000
CL 1000	SPI1	0xF7E82C00
SL1620	SPI2	0xF7E83000
	SM SPI1	0x48034000
	SM SPI1_S	0x4803D000
CL 2010	SPI2	0xF7F04000
SL2610	SPI3	0xF7F0B000
	SPI4	0xF7F0C000
	SPI5	0xF7F0D000

6. References

- Astra Machina Foundation Series Quick Start Guide (PN: 511-001404-01)
- SL1620 Embedded IoT Processor Electrical Specification Datasheet (PN: 505-001428-01)
- SL1640 Embedded IoT Processor Electrical Specification Datasheet (PN: 505-001415-01)
- SL1680 Embedded IoT Processor Electrical Specification Datasheet (PN: 505-001413-01)
- SL2610 Embedded IoT Processor Electrical Specification Datasheet (PN: 505-001501-01)
- Astra Machina SL1620 Developer Kit User Guide (PN: 511-001407-01)
- Astra Machina SL1640 Developer Kit User Guide (PN: 511-001405-01)
- Astra Machina SL1680 Developer Kit User Guide (PN: 511-001403-01)
- Astra Machina SL2610 Developer Kit User Guide (PN: 511-001453-01)

7. Revision History

Revision	Description
А	Initial release.
В	Added SL2610-related items.

Donnesded by Aronnois Original Resident Property of the Contraction of the Contract of the Con

Copyright

Copyright © 2025 Synaptics Incorporated. All Rights Reserved.

Trademark

Astra Machina, Synaptics and the Synaptics logo are trademarks or registered trademarks of Synaptics Incorporated in the United States and/or other countries.

All other trademarks are the properties of their respective owners.

Contact U

Visit our website at www.synaptics.com to locate the Synaptics office nearest you. PN: $506-001608-01\ \text{Rev B}$

Notice

Use of the materials may require a license of intellectual property from a third party or from Synaptics. This document conveys no express or implied licenses to any intellectual property rights belonging to Synaptics or any other party. Synaptics so may, from time to time and at its sole option, update the information contained in this document without notice.

INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED "AS-IS," AND SYNAPTICS HEREBY DISCLAIMS ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY WARRANTIES OF NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT SHALL SYNAPTICS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, HOWEVER CAUSED AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, AND EVEN IF SYNAPTICS WAS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IF A TRIBUNAL OF COMPETENT JURISDICTION DOES NOT PERMIT THE DISCLAIMER OF DIRECT DAMAGES OR ANY OTHER DAMAGES, SYNAPTICS' TOTAL CUMULATIVE LIABILITY TO ANY PARTY SHALL NOT EXCEED ONE HUNDRED US. DOLLARS.